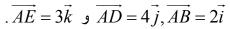
الجمهورية الجزائرية الديمقراطية الشعبية

ثانوية بلحاج قاسم نورالدين دورة ماي 2015 مدة الانجاز: 4 ساعات ونصف

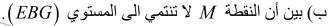
В

مديرية التربية لولاية الشلف

وزارة التربية الوطنية بكالوريا تجريبي الشعبة: رياضيات


اختبار في مادة الرياضيات

🖘 على المترشح أن يختار أحد الموضوعين التاليين


الموضوع الأول

التمرين الأول: (04 نقاط)

، متوازي مستطيلات حيث ABCDEFGH ، $\left(A, \vec{i}, \vec{j}, \vec{k}
ight)$ ، ABCDEFGH متوازي مستطيلات حيث

- . $\overrightarrow{AG} = 2\overrightarrow{i} + 4\overrightarrow{j} + 3\overrightarrow{k}$: أ) تحقق أن (1
- \overrightarrow{EG} و \overrightarrow{EB} و الشعاعين الشعاعين إحداثيي
- ج) أكتب معادلة ديكارتية للمستوي (EBG).
- $M\left(2lpha;4lpha;3lpha
 ight)$ اليكن lpha عدد حقيقي يختلف عن 1 و (2 نقطة من الفضاء
- أ) تحقق أن النقطة M تنتمي الى المستقيم (AG) باستثناء G النقطة

- MEBG ليكن V حجم رباعي الوجوه (3
 - lpha عبر عن V بدلالة lpha
 - ب) أحسب حجم رباعي الوجوه AEBG .
- . ABCDEFGH من أجل أية قيمة للعدد الحقيقي lpha ، يكون V مساويا لحجم متوازي المستطيلات

التمرين الثاني: (04.5 نقاط)

- $(z^2+3)(z^2-6z+21)=0$: المعادلة ذات المجهول المركب التالية : $(z^2+3)(z^2-6z+21)=0$
- 2) في المستوي المركب المنسوب الى المعلم المتعامد و المتجانس المباشر (O,\vec{u},\vec{v}) ، نعتبر النقط C,B,A و D واحقها

D

$$z_D = \overline{z_C}$$
 على الترتيب $z_C = 3 + 2i\sqrt{3}, \ z_B = \sqrt{3}e^{-i\frac{\pi}{2}}, z_A = \sqrt{3}e^{i\frac{\pi}{2}}$ على الترتيب

- بین أن النقط C,B,A و D تنتمي الى نفس الدائرة C التي مركزها Ω ذات اللاحقة $Z_{\Omega}=3$ يطلب تعيين نصف قطرها .
 - O لتكن النقطة E نظيرة النقطة D بالنسبة الى المبدأ (3

$$BEC$$
 يين أن : $\frac{z_C-z_B}{z_E-z_B}=e^{-i\frac{\pi}{3}}$ ثم استنتج طبيعة المثلث (أ

. بين أنه يوجد دوران R مركزه النقطة Bويحول النقطة E الى النقطة C يطلب تعيين زاويته

4) نعتبر التحويل النقطي S الذي يرفق بكل نقطة Mذات اللاحقة z النقطة Mذات اللاحقة z عنبر التحويل النقطي S

$$z' + i\sqrt{3} = 2e^{-i\frac{\pi}{3}}(z + i\sqrt{3})$$

أ) عين طبيعة Sوعناصره المميزة

- ب) عين طبيعة (E)مجموعة النقط M من المستوي ذات اللاحقة z و التي تحقق $z=3+2\sqrt{3}e^{i\theta}$ عدد حقيقي .
 - ج) عين طبيعة (E') صورة (E) بالتحويل S وعناصرها الهندسية .

التمرين الثالث (04.5 نقطة)

 $\begin{cases} u_1 + 2u_2 + u_3 = 100 \\ u_1 \times u_3 = 256 \end{cases}$: ب \mathbb{N}^* ب ب المجموعة $(u_n)_{n \in \mathbb{N}^*}$ ب التكن

- q و u_3 و u_1 ، و المتتالية u_3 و u_1 ، u_2 و المتتالية u_3
 - n عبر عن عبارة الحد العام u_n بدلالة (2
- $P_n = u_1 \times u_2 \times ... \times u_n$ و الجداء $S_n = u_1 + u_2 + ... + u_n$: کلا من المجموع (3
 - 4) أ) ادرس تبعا لقيم العدد الطبيعي n بواقي القسمة الاقليدية للعدد 7^n على 5.
 - ب) عين باقي القسمة الاقليدية لـلعدد $3 49^{2n+1} + 49^{2n+1} + 5$ على 5.

$$S_n' = \frac{1}{\ln 2} \left[\ln 4 + \ln 4^2 + ... + \ln 4^n \right]$$
 غير معدوم: n غير معدوم:

 $S_n'+4n^2+7^{4n}\equiv 0$ [5] : أحسب $S_n'+4n^2+7^{4n}\equiv 0$ جين قيم العدد الطبيعي العدد الطبيعي -

التمرين الرابع: (07 نقاط)

- $g(x) = 2x^2 + 1 \ln|x|$ نعتبر الدالة العددية g المعرفة على المجموعة .I
 - 1) أدرس تغيرات الدالة g.
 - \mathbb{R}^* على على (2) استنتج اشارة

 $(2cm\)(O,ec{i},ec{j})$ المنحني الممثل للدالة f في المستوي المنسوب الى المعلم المتعامد و المتجانس المدالة المستوي المستوي المنسوب الى المعلم المتعامد و المتجانس المدالة المستوي المستو

- 1) أحسب النهايات عند حدود مجموعة التعريف.
- f'(x) أحسب f'(x) وشكل جدول تغيرات الدالة
- نسبي النسبي $-\infty$ عند (C_f) عند (Δ) : y=2x-2 مقارب مائل للمنحني النسبي (3) بين أن المستقيم (Δ) : (Δ) بالنسبة الى (Δ) .
 - $f(C_f)$ ماذا تستنتج بالنسبة للمنحني . f(-x)+f(x) احسب (4
 - $-0.4 < \alpha < -0.3$ بين أن المعادلة f(x) = 0 تقبل حلين أحدهما 1 و الآخر α حيث (5
 - $.ig(C_fig)$ و أرسم (Δ) أرسم (δ
 - $\lambda > 1$ ليکن λ عدد حقيقي حيث $\lambda = 1$.
- (1) أحسب بدلالة λ و بـ (Δ) المستقيم المستوي المحدد بالمنحني (Δ) و المستقيمين (Δ) و المستقيمين الخين معادلتيهما (Δ) عادلتيهما (Δ) و المستقيمين المحدد بالمنحني (Δ) و المستقيمين (Δ) و المستقيمين الخين معادلتيهما (Δ) و المستقيمين المحدد بالمنحني (Δ) و المستقيمين المحدد بالمنحني (Δ) و المستقيمين (Δ) و المستقيمين المحدد بالمنحني (Δ) و المستقيمين (Δ)
 - $A(\lambda) = 2cm^2$: عين قيمة العدد الحقيقي λ بحيث يكون (2

﴿ الموضوع الثاني

التمرين الاول: (04.5 نقاط)

في الفضاء منسوب الى المعلم المتعامد و المتجانس المباشر $(O,\vec{i},\vec{j},\vec{k})$ ، نعتبر النقط (1;2;0),A(3;1;0) نعتبر النقط (0;0;m) عدد حقیقی موجب .

- . $\sin \widehat{ABC}$ و $\cos \widehat{ABC}$ را أي أحسب الجداء السلمي $\overline{BA}.\overline{BC}$ ثم استنتج القيمتين المضبوطتين لـكل من \overline{ABC} و \overline{ABC} ب) أحسب مساحة المثلث \overline{ABC} .
 - . بين أن الشعاع $\vec{n}(1;2;-2)$ ناظمي للمستوي للمستوي أن الشعاع (2;2) بين أن الشعاع (2
 - $.V_{ABCD} = \frac{2m+5}{6}$ بين أن ABCD رباعي وجوه وأن حجمه (3
- $x^2 + y^2 + z^2 2mz + m^2 9 = 0$ التكن M(x; y; z) مجموعة النقط (4) مجموعة النقط (5) مجموعة النقط (4)
- أ) بين أنه من أجل كل عدد حقيقي موجب m فإن S_m سطح كرة يطلب تعيين مركز ها ونصف قطر ها .
 - . (S_m) عين قيمة m حتى يكون (ABC) مستوي مماس لسطح الكرة m
 - (S_m) ويمس (ABC) الموازي تماما للمستوي (P) ويمس ج) الموازي

التمرين الثاني: (04.5 نقطة)

نعتبر المتتالية العددية (u_n) المعرفة من أجل كل عدد

$$\begin{cases} u_0 = 11 \\ u_{n+1} = \sqrt{u_n - 2} + 2 \end{cases}$$
: طبیعي $n = 11$

أ) باستعمال المنحني $\left(C_f
ight)$ الممثل للدالة f المرفقة

 $f(x) = \sqrt{x-2} + 2$ بالمتتالية (u_n) و المعرفة بالعبارة y = x ، مثل الحدود و المنصف الأول ذي المعادلة

. على محور الفواصل u_3, u_2, u_1, u_0

- (u_n) هو تخمينك لاتجاه تغير المتتالية (ب
- $3 \le u_n \le 11$ ، n عدد طبیعي (2
- $u_{n+1} u_n = \sqrt{u_n 2} \left(1 \sqrt{u_n 2} \right)$ ، n عدد طبیعي (3) تحقق أنه من أجل كل عدد طبیعي
 - بين أنَ المتتالية (u_n) متناقصة . (4
 - . استنتج مما سبق أن المتتالية (u_n) متقاربة و عين نهايتها (5
 - $0 \le u_{n+1} 3 \le \frac{1}{2}(u_n 3)$ ، n عدد طبیعي (أ (6)
- (u_n) من أجل كل عدد طبيعي n ، ثم عين نهاية المتتالية $0 \le u_n 3 \le 8 \left(\frac{1}{2}\right)^n$: ب) استنتج أن

التمرين الثالث: (04.5 نقاط)

- . $z^2 2\sqrt{3}z + 4 = 0$ حيث: $z 2\sqrt{3}z + 4 = 0$ المعادلة ذات المجهول z حيث: $z 2\sqrt{3}z + 4 = 0$
 - 2) أكتب الحلول على الشكل المثلثي .
- نعتبر في المستوي المركب المنسوب إلى المعلم المتعامد والمتجانس (O, \vec{u}, \vec{v}) النقط B ، A و C التي لواحقها على (3) الترتيب $z_C = -\sqrt{3} i$ و $z_B = \overline{z_A}$ ، $z_A = \sqrt{3} + i$ الترتيب
 - أ) عين z_D لاحقة النقطة D حتى يكون الرباعي z_D متوازي أضلاع
 - z_{C} و z_{B} ، z_{A} فكتب على الشكل الأسبي الأعداد المركبة
 - . حقيق $\left(\frac{z_A}{2}\right)^n \times \left(\frac{z_B}{2}\right)^n \times \left(\frac{z_C}{2}\right)^n$ عين قيم العدد الطبيعي n حتى يكون العدد (
- $z'=(1-i\sqrt{3})z-\sqrt{3}+3i$ ليكن التحويل النقطي S الذي بكل نقطة M ذات اللاحقة Z النقط M ذات اللاحقة Z حيث S و أعط عناصره المميزة.
- بين أن المجموعة (Γ) للنقط M و التي تحقق $z_C.\overline{z_C}=z_C.\overline{z_C}=z_C.\overline{z_C}$ هي دائرة يطلب تعيين مركزها و نصف قطرها
 - ج) عين المجموعة (Γ) صورة (Γ) بالتحويل Γ و أعط عناصرها المميزة .

التمرين الرابع: (06.5 نقطة)

- $g(x) = \frac{x}{x+1} \ln(x+1)$: با $[0;+\infty[$ المعرفة على المجال g المعرفة على المجال .I
 - 1) أدرس تغيرات الدالة g.
 - .] $0;+\infty$ استنتج إشارة g(x) على المجال (2
- $f(x) = e^{-x} \ln(e^x + 1)$: بعتبر الدالة العددية f المعرفة على المجموعة \mathbb{R} بالمنحني المثل للدالة $f(x) = e^{-x} \ln(e^x + 1)$ بالمنحني الممثل للدالة $f(x) = e^{-x} \ln(e^x + 1)$ بالمنحني الممثل للدالة $f(x) = e^{-x} \ln(e^x + 1)$ بالمنحني الممثل للدالة $f(x) = e^{-x} \ln(e^x + 1)$ بالمنحني الممثل للدالة $f(x) = e^{-x} \ln(e^x + 1)$ بالمنحني الممثل للدالة $f(x) = e^{-x} \ln(e^x + 1)$ بالمنحني الممثل للدالة $f(x) = e^{-x} \ln(e^x + 1)$ بالمنحني الممثل للدالة $f(x) = e^{-x} \ln(e^x + 1)$ بالمنحني الممثل للدالة $f(x) = e^{-x} \ln(e^x + 1)$ بالمنحني الممثل للدالة $f(x) = e^{-x} \ln(e^x + 1)$ بالمنحني الممثل للدالة $f(x) = e^{-x} \ln(e^x + 1)$ بالمنحني الممثل للدالة $f(x) = e^{-x} \ln(e^x + 1)$ بالمنحني الممثل للدالة $f(x) = e^{-x} \ln(e^x + 1)$ بالمنحني الممثل للدالة $f(x) = e^{-x} \ln(e^x + 1)$
- ا أحسب نهايتي الدالة f عند f عند f يمكن وضع $f(x) = \frac{\ln(e^x+1)}{e^x}$ وعند f عند f عند f أحسب نهايتي الدالة أ
 - - $.(C_f)$ أرسم المنحني (3
 - $f'(x)+f(x)=1-\frac{e^x}{e^x+1}$ ، x عدد حقیقی عدد کل عدد (4) (4)
 - . 0 عين دالة أصلية F للدالة f على المجموعة $\mathbb R$ والتي تنعدم من أجل القيمة F
- ج) أحسب وبوحدة المساحات cm^2 المساحة S للحيز المستوي المحدد بالمنحني C_f و محور الفواصل و المستقيمين $x = \ln 2, \ x = 0$ الذين معادلتيهما : $x = \ln 2, \ x = 0$

ل مع تمنياتي لكم بالتوفيق و النجاح في البكالوريا جوان 2015 € أستاذ المادة